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Abstract - The numerical evaluation of impact 

characteristics of a cue in billiards is performed for the case 

where the ball trajectory is deviated from the hitting 

direction and curved by hitting a ball on its upper left or 

right part with an inclined cue. The effective numerical 

method developed in the previous papers, in which a cue 

and a ball are assumed to be isotropically elastic and rigid, 

respectively, is extended for this case. The extended method 

is verified with an experiment using a high speed camera. 

The result obtained with the extended method shows that the 

radius of curvature of the ball trajectory is large for the 

impact on its almost exactly left part with a slightly inclined 

cue, and this result agrees with an empirical one. It is found 

from a numerical simulation that if the Youngôs modulus or 

mass density of a shaft of a cue is large, the ball trajectory 

immediately after the impact is deviated largely and then is 

curved with a large radius of curvature. Because the 

extended method can evaluate quantitatively this kind of 

effects of material properties, it is useful for a design of a 

cue. 
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I.  INTRODUCTION 

 Billiards is one of the most popular games in the world, 

but little research has been done on the design of a cue, 

which consists of a leather tap, a plastic ferrule and a 

wooden shaft. Although it is important how to make a cue 

easier to use or how to fit a cue to the playerôs skill, it has 

been relied on the trial and error method, and a lot of time 

and cost has been needed. In order to make a reasonable 

design for a cue, it is desired to develop an effective 

numerical method and to investigate the effects of material 

properties of a cue on ball motions.  

In the previous papers[1-2], we developed an effective 

numerical method by combining the finite different and the 

finite element methods to analyze the behaviors of impact 

between a cue and a ball in the basic follow or draw shot, 

where the ball is hit on its upper or lower central part in the 

horizontal or an inclined direction, respectively. Not only the 

follow and the draw shots but also various ball hitting 

techniques are required depending on an aspect of a game. 

In the recent paper[3], we extended the numerical method 

further to treat the spinning case, where the ball is hit on the 

left or right part in the horizontal direction. 

In this paper, the numerical method is extended for the 

case where the ball is hit on its upper left or right part in an 

inclined direction to give it a curved trajectory. After the 

extended method is verified using a high speed camera, a 

numerical simulation is performed to investigate the effects 

of stiffness and density of a shaft on the ball motions. The 

rotation around the vertical axis is referred to as óspinô, and 

the rotation around the horizontal axis is referred to as órollô, 

in this paper. 

 

II.  OUTLINE OF NUMERICAL METHOD 

We consider the case where a ball is hit on its upper left part 

with velocity v in an inclined direction ű as shown in Fig.1. 

We adopt a fixed rectangular coordinate O-x,y,z, where the 

y-axis is taken in the vertical direction and the z-axis is taken 

perpendicular to the cue. The impact force is assumed to be 

a concentrated point force. At first, the impact force is 

assumed to be prescribed. The cue is assumed to be 

isotropically elastic and is analyzed with the finite element 

method, while the ball and table are 

 assumed to be rigid and the ball is analyzed with the finite 

difference method as in the previous papers[1-3]. Then, by 

coupling the velocities at the impact point, the impact force 

is modified using the Simplex method. 

 

 

Fig.1  Ball hit on its upper left part in inclined  

direction 
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Fig. 2  Schematic view of ball trajectory 

 

II I.  FINITE DIFFRENCE ANALYSIS OF BALL 

A.  Equation of Motion 
We adopt not only the fixed rectangular coordinate O-x,y,z, 

but also the moving rectangular 

coordinate zyxO ¡¡¡-¡ ,, which is obtained by translating 

the O-x,y,z to the centre of a moving ball, as shown in Fig.1. 

Let b(t) =(bx(t),by(t),bz(t)) denote the displacement of the ball 

centre and ɗ(t) =(ɗx(t), ɗy(t), ɗz(t)) the rotational angle of a 

ball. The equations of motion are given with Eq.(1)-(6). 

For translation: 
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where M and R are the mass and radius of ball, Mr and Ms 

are the frictional moments for rolling and spinning, Ŭ(t) and

ɟ(t) are the angles representing the impact point as shown 

in Fig.1, and () represents the time derivative. 

The velocity of ball centre, b
ʂ

is expressed as the sum 

of the velocity due to slip between a ball and a table, s
ʂ

 , and 

the velocity due to rolling,ɟ#, as shown in Fig.2, i.e., 

zxx Rsb q### +=
         

                             7  

0=yb#
                                                            

8  

xzz Rsb q### -=                                            9  

Theə(t)  and ɘ(t) are the angles between s and x¡-axis, and 

between ɟ# and x¡-axis, respectively, i.e. 

zRt qgr ## =)(cos                              (10) 

xRt qgr ## =)(sin                                (11) 

xsts ## =)(cosd  (12) 

zsts ## -=)(sind                               (13) 

where =r# ɟ#  and s#=| s 
ʂ

|.  

The frictional force is denoted with Fr=(Frx(t),0,Frz(t)). 

The components Frx(t) and Frz(t)) for 0̧s# are represented 

as 

)(cos))(( ttfMgF yrx dm +=              (14) 

)(sin))(( ttfMgF yrz dm +=  (15) 

where ɡ is the coefficient of friction and g is the gravitational 

acceleration. 

 

B. Angles Representing Impact Point 

The yx ¡¡, and z¡coordinates of the impact point are 

expressed in the terms of Ŭ(t) andɟ(t) as follows 

)(cos)(cos)( ttRtx ba-=¡
                         

 (16) 
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)(sin)(cos)( ttRtz ba=¡                          (18) 

Differentiation with t leads to 

bbaaba ### )(sin)(cos)(cos)(sin ttRttRx +=¡     (19) 
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bbaaba ### )(cos)(cos)(sin)(sin ttRttRz +-=¡
  
 (21) 

On the other hand, thex#¡, y#¡ and z#¡ are expressed in terms 

of xq
#, yq
# and zq

# as 

zy tRttRx qaqba ### )(sin)(sin)(cos +=¡               (22) 

zx ttRttRy qbaqba ### )(cos)(cos)(sin)(cos --=¡    (23) 
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From Eq.(19)-(21) and Eq.(22)-(24),  the following 

relationship between Ŭ
ʂ

, ɓ
ʂ

 and ɗ
ʂ

x, ɗ
ʂ

y, ɗ
ʂ

z  is obtained. 
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C.  Analysis method 
We assume here that the impact force f(t) =(fx(t), fy(t), fz(t)) is 

given. The ɛ is assumed to be constant for simplicity, and 

the Mr is considered to be negligibly small because the ball 

rotates easily even on a slightly inclined table, as in the 

previous papers [1-3].  

At first, the frictional force Fr=(Frx(t),0,Frz(t)) is 

obtained from Eq. (14) and (15) by assuming 0)( ¸ts# . The 

number of unknowns to be solved is 15, and they are 

bx(t),by(t),bz(t), ɗx(t), ɗy(t), ɗz(t), sx(t), sy(t),sz(t), s(t), )(tr ,ɡ

(t) ,ɠ(t), Ŭ(t) andɟ(t). The Ŭ(t) andɟ(t) can be related to 

ɗx(t), ɗy(t) and ɗz(t) with Eq.(25)-(27), and by(t)= sy(t)=0. 

The s(t), )(tr ,ɡ(t) andɠ(t)  are related to six(t), so(t), ɗx(t) 

and ɗz(t) through Eq.(10)-(13), and sx(t) and sz(t) can be 

expressed with bx(t),bz(t), ɗx(t) and ɗz(t). Thus, the 15 

unknowns are reduced to 5 independent unknowns, 

bx(t),bz(t), ɗx(t) , ɗy(t) and ɗz(t), which can be solved from the 

5 differential equations, Eq.(1), (3)-(6) by the finite 

difference method (Newmark ɓ =1/6). The initial conditions 

are given as the 5 unknowns and their time derivatives are 

zeros. 

If the first assumption, i.e., 0)( ¸ts# , is found not 

satisfied, Frx(t) and Frz(t) become unknowns, but xs#(t) and 

zs#(t) are known ( xs#(t)= zs#(t)=0). Because the number of 

unknowns (=5) is unchanged, it is possible to solve the 

equations of motion, Eq. (1), (3)-(6). 

 

IV.  FINTE ELEMENT ANALYSIS OF CUE 

Because the details of the finite element analysis are 

described in the previous paper[3] , only a brief description 

necessary for the present paper will be given here. A cue is 

subject to the three dimensional impact force f(t) =(fx(t), 

fy(t), fz(t)), where t is time and the subscripts x, y and z 

represent the x, y and z components, respectively. The 

displacement at the impact point is referred to as c(t) 

=(cx(t),cy(t),cz(t)), and was calculated with an elasto-

dynamic finite element method. We assumed that the cue 

was supported freely because the constraint may be not so 

strong. 

The cue was discretized with hexagonal or pentagonal 

elements (total number of elements nodes were 6363 and 

6184, respectively). The main part of the finite element mesh 

is shown in Fig.3. The mesh size near the contact point was 

chosen to be nearly equal to the radius of the Hertz contact 

area  to reduce the calculation error due to the assumption of 

a concentrated force instead of a distributed one.  

 

 

 

 

 

 

(a)  Finite element mesh of main part of cue 

 

 

 

(b)  Cross-section 

Fig.3 Finite element discretization of cue 
 

V.  COUPLING VELOCITIES OF CUE AND 

BALL AT IMPACT POINT 

 

We assume that there is no slip at the impact point 

between a cue and a ball, because the slip is usually avoided 

by applying chalk on the tip of the tap to increase the 

frictional force. By equating the velocities of the cue and the 

ball at the contact point, following equations are obtained,  
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where the positive directions of xc# and zc# are taken 

opposite to those of the x and the z axes in Fig.1. The last 

two terms in the braces { } in these equations are 

the yx ¡¡, and z¡components of the velocity due to rotation 

at the impact point on the ball as shown with Eq. (22)-(24). 

Making use of Eq. (28)-(30), the fx(t),fy(t) and fz(t) are 

determined as follows. We consider to determine fx(tn+1), 

fy(tn+1) and fz(tn+1) (n=0,1,2,é, tn+1= tn +  ȹt), when fx(tn) fy(tn) 

and fz(tn) ( fx(t0)= fy(t0)= fz(t0)=0) are known. 

(a)  Assume fx(tn+1) fy(tn+1) and fz(tn+1). Employ the Lagrange 

method using the values at tn-2 ,tn-1 and tn+1 for n¢2  to 

reduce the iterative number. 

(b)  Calculate cx(tn+1),cy(tn+1),cz(tn+1) and their time 

derivatives with the finite element method (section 4)  

(c) Calculate bx(tn+1), bz(tn+1), ɗx(tn+1), ɗy(tn+1), ɗz(tn+1), 

the other unknowns and their time derivatives with the 

finite difference method (section 3) 

(d)  Evaluate the square sum of residuals of the left hand 

sides of Eq. (28) - (30).  

(e)  Employ the Simplex method with the cost function 

defined as the above square sum of residuals, and 

modify fx(tn+1), fx(tn+1) and fz(tn+1) .  

(f)  Repeat (a)-(e) until the cost function becomes small 

enough. 

(g)  Repeat above procedures until F(tn+1) becomes 

small enough. 
All unknowns including the ball motion during impact are 

calculated in the above procedures. The ball motion after 

impact is obtained by solving Eq. (1)-(15) after substituting 

F(t)=0. 
XY
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VI.  COUPLING VELOCITIES OF CUE AND BALL AT 

IMPACT POINT 

A. Experimental Verification 

An experiment where a ball was hit on its upper 

left part in an inclined direction was conducted. The 

displacement of the ball was measured by taking a 

movie from above using a high speed camera (Nobby 

tech Ltd make, Phantom v4.2 model, 2000 frames/s, 

0.19 Mega pixels). A still photo was also taken from 

horizontal direction using a usual digital camera 

(Nikon D50, 6.10 Mega pixels). The angles ɓ(0) and ű 

were measured directly from the movie and photo, 

while Ŭ(0)and v were obtained indirectly from them by 

making use of the geometrical relationship. The results 

were Ŭ(0)= A12 , ɓ(0)= A20 , ű=  A12  and v= 1.5 m/s 

(See Fig.1). The radius of the ball was R=0.0275 m 

and its mass M=0.169kg. 

In the numerical prediction, the coefficient of friction was 

assumed as ɛ =0.2, the frictional moments for rolling was 

assumed as Mr =0, as in the previous papers[1-3]. The 

frictional moments for spinning, Ms was taken as Ms =0.022 

Nm by performing a preliminary experiment, where a 

movie was taken using the same high speed camera from 

above a ball spinning without rolling and sliding, and the 

decreasing rate of the spinning velocity was measured. The 

material properties of the cue are the same as those for the 

analysis 1 (óNormalô) in the subsection 7.1, and the time 

increment in the finite difference method was taken as ȹt = 

5³10
-5
s, as in the previous papers[1-3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Comparison of analytical of and experimental results of 

ball trajectories 

 

The experimental and numerical ball trajectories 

for 5.00 ¢¢t s are compared in Fig.4, where the 

displacement in the z direction is enlarged 200 times, 

because they are much small compared with that in the 

x direction. The symbol representing measurement 

error (|------|) indicates the length corresponding to 1 

pixel. It is found from this result that the ball 

trajectory predicted numerically agrees well with the 

one obtained experimentally within the measurement 

error. It is noted that the ball trajectory is deviated 

from the x direction immediately after the impact, and 

then is curved. 

B. Relationship between Impact Direction and Ball 

Trajectory Experimental Verification 

Numerical analyses were carried out using the present 

method for various values of Ŭ(0) and ű, and the ball 

trajectories obtained are shown in Fig.5, where v and 

ɓ(0) are assumed as v= 1.5 m/s and ɓ(0)= 
A20 . It is 

seen from the figure that the radius of curvature of the 

ball trajectory is large for the impact on its almost 

exactly left part with a slightly inclined cue, and this 

result agrees with an empirical one. 

In the previous paper[3], an experiment on the 

movement of the ball hit at Ŭ(0)=0, ɓ(0)=
A20  in the 

direction ű=0  was performed, and it was observed 

that the ball trajectory was straight, but deviated from 

the x direction (See Fig.1). The present numerical 

result shown in Fig.5 is consistent with the 

experimental one in the previous paper[3]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Effect of impact condition on ball trajectories 

 

VII.  EFFECT OF MATERIAL PROPERTIES OF SHAFT 

A. Material properties 
In order to investigate the effects of material properties of a 

shaft of a cue, numerical analyses were performed for  Ŭ(0) 

= A15 , ɓ(0) = A20 , ű= A15 and v= 1.5 m/s. Five kinds of 

material constants of a shaft shown in Table 1 were used. 

The following material constants of the tap and the ferrule 

were common to each cue; Youngôs modulus E=0.28 GPa, 

Poisonôs ratio ɪ=0.4, mass density=420 kgm
-3
 for the tap, 

and E=2.57 GPa, ɪ=0.4, mass density=1074 kgm
-3
 for the 

ferrule. The other constants were the same as those in 

subsection 6.1 
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Trajectory 1

Trajectory 3      

Trajectory 4

Trajectory 5

Trajectory 6

: Ŭ(0)=   0°, ű=   0°

: Ŭ(0)=0.1°, ű=0.1°

: Ŭ(0)=   1°, ű=   1°

: Ŭ(0)=   5°, ű=   5°

: Ŭ(0)= 10°, ű= 10°

: Ŭ(0)= 12°, ű= 12°


