Effects of Material Properties of Cue on Ball Trajectory in Billiards
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inclined direction to give it a curved trajectory. After the
Abstract- The numericaévaluationof impact extended method is verified using a high speed camera, a
characteristics of a cue in billiards is performed for the casenumerical simulation is performad investigate the effects
where the ball trajectory is deviated from the hitting of stiffness and density of a shaft on the ball motions. The
direction and curved by hitting a ball on its upper left or rotation around the vertical axis is referred tassng and
right part with an inclined cue. The effective numerical the rotation around the horizontal axis is referred to@ky

method developed in the previous papers, in which a cue in this paper.
and a ball are assumed to ksotropically elastic and rigid,
.respe.c.tlvely., is extendegl for thls.case. The extended method Il. OUTLINE OF NUMERCAL METHOD
is verified with an experiment using a high speed camera.

The result obtained with the extended method shows that th&e consider the case where a ball isdritits upper left part
radius ofcurvatureof the ball trajectory idarge for the with velocityv in an inclined directiordi as shown in Fig.1.
impact on its almost exactly left part with a slightly inclined We adopt a fixed rectangular coordinatex®,z, where the

cue, and this result agrees with amprical one. It is found y-axis is taken in the vertical direction and thaxs is taken
from a numerical simulation that if the Youdsgnodulus or  perpendicular to the cue. The impact force is assumed to be

mass density of a shaft of a cue is large, thetbalbctory a concentrated point forcat first, the impact érce is
immediately after the impact is deviated largely and then is assumed to be prescribed. The cue is assumed to be
curved with a large radius of curvature. Because the isotropicallyelastic ands analyed with thefinite element

extended method can evaluate quantitatively this kind of  method, while the baknd table are
effects of material properties, it is useful for a design of a  assumed to be rigid anitle ball isanalyzed with thefinite

cue differencemethod as in th@reviouspapeg1-3]. Then, by
coupling thevelocitiesat theimpactpoint, the impact force
Keywords 1 Billiard s, Immact, Simulation is modified using the Simplex method.

I. INTRODUCTION

Billiards is one of thenost popular games in the warld
but little research has been done on the design of a cue,
which consists of a leather tap, a plastic ferrule and a
wooden shaft. Although it isnportant how to make a cue
easier to use or how to fit a cue to the pléyekill, it has
been relied on the trial and error method, and a lot of time
and cost has been needed. In order to make a reasonable
design for a cue, it is desired to develop dfective
numerical method and tmvestigate the effects of mait
properties of a cue dvall motions.

In the previous papgis2], we developed an effective
numerical methodby combining the finite different and the
finite elementmethodgo analyge the behavics of impact
between a cue and a ball in the basic foltovdrawshot
where the ball is hit on its upper or lower central part in the direction
horizontal or an inclined direction, respectiveéliot only the
follow and the draw shots but also varioud hdting
techniques are required depending on an aspect of a game.

In the recent papE], we extended the numerical method
further to treat the spinning case, where the ball is hit on the
left or right part in the horizontal direction.

In this paper, tb numerical method is extendémt the
case where the ball is hit on its upper left or right part in an

Fig.1 Ball hit on its upper left part in inclined
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Fig. 2 Schematic view of ball trajectory

IIl. FINITE DIFFRENCE ANAYSIS OF BALL

A. Equation of Motion
We adopt not only the fixed rectangutaordinate GXx,y,z,
but alsothe moving rectangular

coordinatédij- Xi, Yi, Ziwhich is obtained by translating
the OXx,y,z to the centre of a moviragll, as shown ifrig.1.

Let b(t) =(by(t),by(t),bt)) denote the displacement of the ball

centre andf(t) =(d(t), d(t), d(t)) therotational angle of a
ball. The equations ahotion are given witteq.(1)-(6).
For translation:

MEB = £,(t) - F,(t) @)
MB =0 )
MBf = f,(t)- F,(t) 3)

For rotation:
EMRziff =- f (t)Rcosa(t)sinb(t) - f,(t)Rsina(t)

+M,sing (t)- F,(OR

4)
2 MR = t,(t)Rcosa(t)sin b(t)
+ f,(t)Rcosa(t)cosh (t)- M,

()
éMRzﬁf = f (t)Rsina(t) F, ()R
- f, (t)Rcosa(t)cosb(t) - M, cosg(t)

(6)

whereM andR are the mass and radius of bMl,andMs
are thefrictional momens for rolling and spinningU ( @ngd
4 (t) arethe angls representing the impact pointsmwn
in Fig.1, and () represents the time derivative.

The velocity of ball centr&) is expressed as the sum

of the velocity due to slip between a ball and a tgb,le,nd
the velocity due to rollingg#, as shown in Fig.d,e.,

B = ¢ + R4, 7
5 =0 8
B =¢- R 9

Thes (t) ands (t) arethe angles betweerand Xj -axis, and
betveen ¢# and Xj -axis,respectivelyi.e.

#Hcosg(t) = R (10)

#sing(t) = R, (12)

geosd(t) = (12)

#sind(t) =- # (13)
where #= ¢ and #=f5|.

The frictional force is denoted with.=(F(t),0,F.(t)).

The componentB,(t) andF(t)) for #, Oare represented
as

F. = mMg + f, (1)) cosaft) (14)

F,=mMg+ f (1)) sina(t) (15)

whereg is the coefficient of friction ang is the gravitational
acceleration

B. Angles Representing Impact Point
The Xij, Yi and zjcoordinates of the impapbint are
expressed in the terms Of( angy (t) as follows

Xi(t) = - Rcosa(t) cosb(t) (16)
yi(t) =- Rsina(t) (%))
Zi(t) = Rcosa(t) sin b(t) (18)

Differentiation witht leads to

#% = Rsina(t) cosb(t)#+ Rcosa(t)sinb(t) # (19)
¥ = - Rcosa (t)a# (20)
# = - Rsina(t) sin b(t)d#+ Rcosa(t)cosb(t) # (21)

On the other hand, th# , ¥ and #i are expressed ietms

of(ﬁ, cf, andcﬁ as

# = Reosa (t) sin b(t)d, + Rsina (t)d., (22)
¥ = - Rcosa(t)sin b(t)d, - Reosa(t)cosb(t)d, (23)
# =- Rsina(t)d. + Rcosa (t) cosb(t)d, (24)
FromEQq(19)(21) andEq(22)-(24), the following
relationship betweésﬁl,gb and'sdx,sdy,sdZ is obtained.

cosa(t)sin b(t) #+sina (t) cosb(t)d

(25)
=cosa(t)sinb()d, +sina(t)d,
d=sinb(t)d, +cosb(t)d. (26)
cosa (t)cosb(t) F- sina(t)sin b(t)d @)

- sina (t)ji +cosa(t) cosb(t)cﬁ



C. Analysis method
We assume here that the impact fofte =(f,(t), f,(t), 1)) is
given Theeg isassumed to be constant for simpliciyd
theM, is considered to be negligibly small because the ball
rotates easily even on a slightly inclined talale in the
previous paperfl-3].

At first, the frictional force,=(F,(t),0,F(1)) is
obtained from Eg(14) and (15) byassumin¢ &t) , 0. The

number of unknowns to be solved is 15, and they are

b(®),by(0).bAt), di(t), d(D), dt), 1), S,1).540), s(t), 7 (1) .9

) ,g ®),U (andg (t). TheU (d@ndg (t) can be related to
dy(t), di(t) andd(t) with Eq.(25)}-(27), andb,(t)= s,(t)=0.
Thes(t), 7 (t) ,g (t) andy (t) are related te(t), sot), di(t)
andd,(t) through Eq(10)(13), ands(t) ands,t) can be
expressed with,(t),b,(t), di(t) andd,(t). Thus, the 15
unknowns are reduced to 5 independent unknowns,
by(t),bAt), di(t) , dy(t) anddy(t), which can be solved from the
5 differential equations, E@.), (3)(6) by the finite
difference method (Newmafk=1/6). The iritial conditions
are given as the 5 unknowns and their time derivatives are
zeros.

If the first assumptioni.e. #t) ., 0, is found not
satisfied,F(t) andF,,(t) becomeunknowns, but$§ (t) and

& (t) areknown (&, (t)= & (t)=0). Because the number of

unknowns (=5) is unchanged, it is possible to solve the
equations of motion, Eq1), (3)(6).

IV. FINTE ELEMENT ANALYIS OF CUE

Because the details of the finiteerlent analysis are
described in the previous paffr, only a brief description
necessary for the present paper will be given.herie is
subject to the thregimensionaimpact forcef(t) =(fx(t),
fy(t), fz(t)), wheret is timeand the subscripts x,and z
represent the x, §ndz components, respectively. The
displacement at the impact point is referred to(8s c
=(cx(t),cy(t),cz(t)), and was calculated with an elasto
dynamic finite element method. We assurttet the cue
was supported freelgecause¢he constraininay be not so
strong.

The cuewas discretized with hexagonal or pentagonal
elements (total number of elementsleswvere6363 and
6184, respectively The main p# of the finite element mesh
is shown in FigB. The mesh size near the contpotnt was

chosen to be nearly equal to the radius of the Hertz contact
area to reduce the calculation error due to the assumption

a concentrated force instead afiatributed one
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(a) Finite element mesh of main part of cue
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(b) Crosssedion
Fig.3 Fnite elemendiscretizatiorof cue

V. COUPLING VELOCITIE®F CUE AND
BALL AT IMPACT POINT

We assure that there is no slip at thmpact point
between a cue and a bdigcause the slip issuallyavoided
by applying chalk on the tip of thiap to increase the
frictional force. By equating the velocities of the cue and the
ball at the contact point, following equations are obtained,

vcoy - &
{8 + Reosa(t) sinb()# + Rsinat)d} = 0

28
vsin/ +é -
{- Reosa(t)sinb(t)d - Reosa(t)cosb(t)d} =0
(29)
- & - {ff - Rsina(t)df +Rcosa(t)cosb(t)df =0
30

where the positive directions &, and & are taken

opposite to those of theand the z axes in Fig.1. The last
two terms in the braces { } in these equations are

theXij, Yiand zZjcomponents of the velocity due to rotation

at the impact point on the ball as shown it (22)-(24).
Making use oEq. (28)-(30), hef,(t),f,(t) andft) are
determinedhs follows.We consider to determirfgt,.1),
1:y(tn+1) andfz(tml) (n=0,1 ’ 2; tn+é: tn+ Cp):! Whenfx(tn) fy(tn)
andf/t,) (fu(to)= fy(to)= fto)=0) are known.

(a) Assumefy(tn:1) fy(tn+1) andf(tn.1). Employ the Lagrange
method using the valuestasb ,t,., andt,,, for2¢ n to
reduce the iterative number.

(b) Calculag cy(tn+1),Cy(tn+1),CAtr+1) andtheir time
derivatives with the finite element method (section 4)

(C) CaICUIatebx(tnﬂ)y bz(tn+1): d'x(tn+1): d'y(tn+1): dz(tn+1),
the other unknowns and their time derivatives with the
finite difference method (section 3)

(d) Evaluatethesquaresum of residalsof the left hand
sides ofEq. (28) - (30).

(()?) Employ theSimplex methodwith the cosfunction
defined as the abosguaresum of residuals, and
modify fy(th+1), f(thr1) @andfy(tnea) .

() Repeat#)-(e) until the cost functiolecomes small
enough.

(g) Repeat above procedures urfift,.;) becomes

small enough.

All unknowns including the ball motion during impact are

calculated in the above procedures. The ball motion after

impact is obtained by solving E(L)-(15) after substituting

F(t)=0.



VI. COUPLING VELOCITIE®F CUE AND BALL AT
IMPACT POINT

A. Experimental Verification

pixel. It is found fom this result that the ball
trajectory predicted numerically agrees well with the
one obtaine@xperimentallywithin the measurement
error. It is noted that the ball trajectory is deviated

An experiment where a ball was hit on its upperffom thex direction immediately after the impacind

left part in an inclined direction was conductddhe
displacementof the ball wvas meaured bytaking a

then is cuved.

movie from abovausing a high speed camera (NobbyB- Relationship between Impact Direction and Ball

tech Ltd make, Phantom v4.2 mod2000 frames/s

Trajectory Experimental Verification

0.19 Mega pixels A still photo was also taken from Numerical anglyses were carried mls!,ng the present
horizontal direction using a usual digital cameraMethodfor various values ot{0) andd, and the ball

(Nikon D50, 6.10 Mega pixels). Tranglesb(0) andd

trajectoriesobtained are shown in Fig.5, whereand

were measuk directly from the movie and photo, b(0) are assumed as= 1.5 m/s andb(0)= 20° 1t is
while U0)andv were obtained indirectly from them by seen from the figure that the radiuscofvatureof the
making use of the geometrical relationship. The resultsall trajectory is large for the impact on itbmast

were J0)=12%, b(0)= 20", (= 12" andv= 1.5 m/s
(See Fig.1).The radius of the ball waR=0.0275 m
and its mast=0.169kg.

exactly left part with a slightly inclined cue, and this
result agrees with aemgrical one.
In the previous papB], an experiment onthe

In the numerical prediction, the coefficient of friction wasmovement of the balhit at ({0)=0, b(0)= 20%in the

assumed as =0.2, thefrictional momens for rolling was
assumed a#l, =0, as in the préous papefd-3]. The
frictional momend for spinningMswas taken ass=0.022

Nm by performing a preliminary experiment, where
movie was taken using the same high speed camera fr
above a ball spinning without rolling and sliding, and the

decreasingate of the spinning velocity was measurdie
material properties of the cue are the same as fibloge
analysis 1{ 6 N o rimthel sdbpection 7.1, artide time
increment in théinite differencemethod was taken apt=
53 10°s, as in the previous papgrs].
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Fig.4 Comparison of analytical of an@éxperimentatesults of
ball trajectories

0.004

The experimental and numeridall trajectories
for 0¢t ¢ 0.5s are compareith Fig.4, where the
displacement in thedirection is enlarged 200 times,

Fesult shown

direction G P was performed, and it was observed
that the ball trajectory was straight, but deviated from
the x direction (See Fig.1)The present numerical

in Fig.5 is consistent with the

%?perimental one in the previous pdpgr

Fig.5 Effect of impact condition on ball trajectories

VII. EFFECT OF MATERIAL ROPERTIES OF SHAFT

A. Material properties

In order to investigate the effects of material properties of a
shaft of a cue, umerical analyses were performed fot0)
=15", b(0) =20", G =15%andv= 1.5 m/s. Five kinds of
material constants of a shaft shown in Table 1 were used.
The following material constants of the tap and the ferrule
were commonto eachcue; Youn@gs modulusE=0.28 GPa,
Poisors ratior =0.4, mass density20 kgm?* for the tap,
andE=2.57 GPaj =0.4, mass densiyl074kgm® for the

because they are much small compared with that in therrule. The other constants were the same as those in
x direction. The symbol representing measurement subsection 6.1

error (}-----]) indicates the length corresponding to 1



