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Abstract - Conventional ductile  fracture criteria are not 
applicable in  th e vicin ity o f ma ximum frictio n su rfaces for 
several rigid plastic material models because the equivalent 
strain rate (second i nvariant of  t he st rain rat e t ensor) 
approaches i nfinity near such surf aces. In t he present  
paper, a non-local ductile fracture criterion generalizing 
the mo dified Co ckroft-Latham d uctile fra cture criterio n is 
proposed to overcome this difficulty with the use of 
conventional local ductile fractu re criteria. The final form 
of the new ductile fracture criterion involves the strain rate 
intensity fa ctor wh ich is th e coefficient of the principal 
singular term in a seri es expansion of the equivalent strain 
rate in the vicinity of maximum friction surfaces. When the 
velocity field is not singular, the new ductile fracture 
criterion reduces to the modified Cockroft-Latham criterion. 
The strain rate intensity factor cannot be found by means of 
commercial finite element packages since the corresponding 
velocity f ield i s si ngular. In t he present  paper, t he new  
fracture criterio n is illu strated with  th e u se o f a n 
approximate semi-analytical solution f or pl ane st rain 
drawing. It is sh own th at th e p rediction is in  q ualitative 
agreement with physical expectations. 
 
Keywords - friction, singularity, ductile fracture, metal 
forming. 
 

I.  INTRODUCTION 

 Reviews of d uctile fractu re criteria are g iven in  [1 -3]. 
The Cockroft-Latham ductile fractu re criterio n [4 ] an d its 
modifications are widely used in applications [5 – 12 among 
others]. These criteria, as well as many other ductile fracture 
criteria, i nvolve t he equi valent st rain rat e. On t he other 
hand, t he equi valent st rain rat e approaches i nfinity i n t he 
vicinity of m aximum friction surfaces [13]. The definition 
for the m aximum friction surface depends on the m aterial 
model chosen. For exam ple, the friction stress at slid ing is 
equal to the shear yield stress of the m aterial in the case of 
rigid p erfectly p lastic m aterial. Du ctile fractu re so metimes 
occurs near frictional interfaces  in m etal forming processes 
[6]. The aforementioned behaviour of t he equivalent st rain 
rate in the vicinity of m aximum friction surfaces is not 
compatible with  d uctile fractu re criteria sin ce th ey predict 
the fractu re in itiation at th e very beginning o f any process 
independently on other process condi tions. A possi ble way 
to overcome this difficulty is to use non-local ductile 
fracture criteria. In the pr esent paper such a criterion 
generalizing t he m odified C ockroft-Latham cri terion [5]  i s 
proposed and then adopted to predict the fracture initiation 
in plane strain drawing. Other non-local ductile fracture 
criteria have been proposed in [14, 15]. 

 

II.  NON-LOCAL DUCTILE FRACTURE CRITERION  

 The modified Cockroft-Latham ductile fracture criterion 
is given by [5] 
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Here 1  is th e m aximum p rincipal stress, eq  is the 
equivalent st ress, eq  is th e eq uivalent strain  rate, t is th e 
time, an d 1C  is a m aterial const ant. The equi valent st rain 

rate i s defi ned by  2 3eq ij ij    where ij  are the 
components of the strain rate  tensor and the equivalent 
stress by 3 2eq ij ij    where ij ij ij    , ij  are 
the com ponents of the stress tensor,   is the hydrostatic 
stress, and ij  is Kroneker’s sy mbol. In the case of rigid 
perfectly plastic solids the equiva lent strain rate approaches 
infinity in the vicinity of maximum friction surfaces 
according to the following rule [13] 
 

 1 , 0eq D s o s s                                            (2) 
 

where D is the strain rate intensity  factor independent on s 
and s is the norm al distance to the m aximum friction 
surface. For this m aterial m odel the maximum friction 
surface is defined by the condition 
  

f s                                                                                 (3) 
 

where f  is the friction stress and s  is the shear yield 
stress. The condition (3) is valid  in the case of sliding. The 
equivalent strain rate follows the rule (2) for several rigid 
plastic m aterial m odels [16- 19], though the form ulation of 
the maximum friction law may differ from (3). 
 Substituting equation (2) into equation (1) shows that the 
fracture criterion is not applicable in the vicinity of 
maximum friction surfaces. In fact, it predicts the fracture 
initiation at the very beginning of any process independently 
on other process conditions. It is very  sim ilar to the 
mechanics of cracks where fracture conditions from  the 
strength of m aterials cannot be used for cracked bodies 
because stress com ponents approach infinity n ear the crack 
tip (for exam ple, [20] ). A possible approach to overcom e 
this difficulty in the mechanics of cracks has been proposed 
in [21]. A sim ilar approach is adopted in the present paper 
to m ake equation (2) com patible with the ductile fracture 
criterion (1). Note that even though the equivalent strain 
rate does not approach infinity in real processes, layers of 
intensive plastic deform ation frequently  appears near 
frictional interfaces in m etal form ing processes [22-25]. 
Equation (2) is in qualitativ e agreem ent with this 
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experimental fact because it predicts the existence of a layer 
of intensive plastic deform ation in the vicinity  of maximum 
friction surfaces. 
 An average equivalent strain  rate in the vicinity of 
maximum friction surfaces can be defined by 
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   ,                                                                 (4) 

 

where cs  is the thickness of the layer of intensive plastic 
deformation. A m ethod for determining cs  has been 
proposed in [25]. Substituting equation (2) into equation (4) 
gives 
 

2eq cD s                                                                     (5) 
 
to leading order. The ductile fracture criterion (1) can be 
generalized by  replacing eq  with eq . Then, with the use 
of equation (5), 
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where C is a m aterial constant whose value is in general 
different from the value of 1C . It is obvious from  equation 
(4) that eq eq   at points of the friction surface if the 
equivalent strain rate is described by a non-singular function 
and 0cs  . Therefore, the new non-local fracture criterion 
reduces to the m odified Cock roft-Latham criterion in such 
cases.  
 In the case of stationary processes dt dl u  where dl  
is the infinitesimal arc length of streamlines coinciding with 
the m aximum friction surface and u  is the velocity 
component tangent to the friction surface. Therefore, for 
stationary processes equation (6) transforms to 
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It has been assum ed here that 0l   at the entrance to the 
plastic zone.  
 

III.  PLANE STRAIN DRAWING 

 A schematic diagram of the plane strain drawing process 
is shown in Fig. 1. The solution for flow of rigid 
perfectly/plastic m aterial through a wedge-shaped channel 
given in [26] can be used to  find an approximate solution of 
this problem. In particular, the stress com ponents in the 
plane polar coordinate system r  are given by  
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where    is the angle between a radius and the direction of 

1  measured from  the radius anti-clockwise, 0c   and A 
are constants of integration, 1r  is the value of r at the 
entrance to the die, and 0r  is the value of r at the exit from  
the die. By assum ption,   depends only on   and this 
dependence is determined by the following equation 
 

sec 2 1d d c    .                                                        (9) 
 

If the friction law (3) applies then   ranges between 0 and 
4  in the interval 00     where 02  is the total angle 

of the die (Fig. 1). The circum ferential velocity  vanishes 
and the radial velocity is given by 
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where B is a positive constant. Using equations (9) and (10) 
the equivalent strain rate can be written in the form 
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It follows from  equations (3) and (8) that the m aximum 
friction law in the case under consideration becomes 
 

4                                                                             (12) 
 

at 0  . Su bstituting eq uation (1 2) in to eq uation (11) 
shows t hat eq    as 0  . M oreover, expandi ng t he 
denominator of equat ion (11) i n a seri es i n t he vicinity of 
the point 4   gives 
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On the other hand, i ntegrating equat ion (9) and usi ng t he 
boundary condition (12) lead to 
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Combining equations (13) and (14) results in 
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Fig.1 Schematic diagram of the plane strain 
drawing process. 
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Comparing the general  represent ation of t he equi valent 
strain rate in the vicinity of m aximum friction surfaces in 
the form of equation (2) and equation (15) gives  
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There are two boundary conditions to find a constant of 
integration involved in the solution of equat ion (9) and t he 
value of c. One of this conditions is given by equation (12) 
and the other is th e symmetry condition in the form 0   
for 0  . Using these conditions and equation (9) one gets 
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This equat ion should be sol ved for c numerically. Assume 
that the magnitude of the material flux per unit length is Q. 
Then, it follows from equation (10) that 
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Using equation (9) integration with respect to   in equation 
(18) can be replaced with in tegration with respect to  . 
Then, 
 

 

1
4

2
0

cos 2
cos 2

B Q d
c

  



 

  
  

 .                                        (19) 

 

Excluding c and B i n equat ion (16) by  m eans of equat ion 
(19) and the solution to equat ion (17) i t i s possible to find 
the dependence of t he st rain rate intensity factor on Q and 

0 . It is clear that the dependence on Q is linear. Therefore, 
it i s conveni ent t o i ntroduce t he di mensionless strain rate 
intensity factor in the form 
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The dependence of d on 0  is illustrated in  Fig . 2 . Th e 
value of A involved in equation (8) i s determined from the 
condition that the total horizontal force at the entrance to the 
die vanishes. This condition has the following form 
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Using equation (9) i ntegration wi th respect  t o   in this 
equation can be replaced with integration with respect to  . 
Also, t he st ress components i nvolved i n equation (21) can 
be excluded by means of equation (8). Then, 
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The value of   in t his equat ion shoul d be excluded by 
means of the solution to equation (9). After that integrating 
in equation (22) can be completed numerically.  
 Using the transformation equat ions for st ress 
components, t he m ajor pri ncipal st ress at  0   (or 

4  ) is determined in the form 
 

1 rr r    .                                                                 (23) 
 

It has been t aken i nto account  here t hat rr   at 
4  , as fo llows fro m eq uation (8 ). Substituting 

equation (8) at 4   into equation (23) gives 
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The value of u  involved in equation (7) is determined from 
equation (10) with the use of equation (19) as 
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Also, dl dr   in t he probl em under consideration. 
Therefore, su bstituting eq uations (2 0), (2 4) an d (2 5) into 
equation (7) gives 
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It has been assumed here that the m aterial obeys the Mises 
yield criterion and, therefore, 3eq s  . 
 Several general  equat ions fo r determining th e v alue o f 

cs  have been proposed i n [25] .  It  i s important to mention 
that the integral involved in equat ion (26) i s improper and 
its convergence is an additional requirement imposed on any 
equation for cs  compatible with  th e fractu re criterio n 
proposed. The si mplest equat ion for cs  given i n [25]  does 
not satisfy this requi rement. Anot her equat ion for cs  
proposed in this work is  
 

 c m c mds dt D s s s  ,                                               (27) 
 

where ms  is a m aterial constant and   is a m aterial 
function of i ts argument. In the case of stationary processes 
equation (27) takes the following form 
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At the present tim e, no experim ental data are available to 
determine ms  and  . The physical meaning of ms  is that it 
is the maximum possible thickness of the layer o f intensive 
plastic deform ation. Therefore, t he simplest function 
 c ms s  satisfying all the necessary requirements is  

 

   m 1c c ms s s s   ,                                               (29) 
 

where   is a m aterial co nstant. Su bstituting eq uation (29) 
into equation (28) gives 
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Excluding the strain rate in tensity factor in this equation by 
means of equat ion (20) and u  by m eans of equat ion (25) 
results, with the use of equation (19), in 
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at 4  . Integrating this eq uation with  th e u se o f th e 
boundary condition 0cs   at 1r r  leads to 
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Substituting equation (32) into equation (26) gives  
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at the exit from the die. Here 0 1q r r  and 1 mr s  . It is 
obvious t hat 0 1q H H  (Fig. 1 ). Th e in tegral in equation 
(33) is i mproper but  i t i s easy  t o show convergence. The 
variation of J with 0  is depicted in Fig.3. Note that   is a 
very l arge num ber si nce ms  is very sm all. Therefore, the 
right hand side of equation (33) i s very small. On t he other 
hand, i t i s seen from  Fi g.3 that the value of J i n general  
differs from zero significantly . Th erefore, due to a lack of 
experimental data, it is possi ble t o approxi mately est imate 
the instant of fraction initiati on by m eans of the condition 

0J  . Th us th e in tersection o f th e cu rves with the 
horizontal ax is determines the die angles at which fracture 
initiates near the friction surface at a given value of 
reduction (Fig. 3). It is seen from this figure that the range 
of safe angles increases with the reduction. It is however 
necessary to  m ention th at th e co mplete analysis of the 
process requires consideration of ot her fracture modes such 
as, for example, the formation of central bursting [27].  
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Fig.2 Variation of the dimensionless strain rate intensity 
factor with die angle. 
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Fig.3 Effect of die angle and reduction on the fracture 
initiation according to the new fracture criterion. 

III.  DISCUSSION AND CONCLUSIONS 

 A new non-local ductile fracture criterion has been 
proposed. The criterion allows one t o overcom e t he 
difficulty related to the singular behaviour of the equivalent 
strain rate near m aximum friction surfaces. An exam ple to 
illustrate the procedure to apply the new criterion has been 
given. For appl ication to real metal forming processes, it is 
necessary t o propose and carry  out  a speci al experimental 
program to determine the material constants involved in the 
model. It  i s obvi ous t hat convent ional tests are not 
appropriate for t his purpose si nce t he model includes the 
strain rate in tensity facto r wh ich is asso ciated with  infinite 
equivalent strain rate at maximum friction surfaces. 
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